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Summary

We present a method to determine the digplacement and the stress on
the crack plane for a three-dimensional shear crack of arbitrary shape
propagating in an infinite, homogencous medium which is linearly elastic everywhere
off the crack plane, The mair, idea of the method (which is due to Hamano) 1is to
use a representation theorem in which the displacement at any given point
on the crack plane is written as an integral of the traction over the
whole crack piane. The tractions are weighted by the three-dimensional
solution to Lamb's problem. Such solutions usually require one numerical
integration, but fortumately the necessary solutilons are cobtainable in
closed form. The weighting factor is discretized over a space and time
grid to solve the integral equation numerically. As a test of the accu-
racy of our numerical technique, we compare the results with known solu-

tions for two simple cases.



Introduction

It is now taken as a general working hypothesls that earthquakes
(certainly shallow earthquakes) are produced by a sudden decrease of
shear traction due to an instability whicﬁ initiates at a
point on some fault surface within the Earth. The rupture spreads over
the fault surface and shearing motions develop further, behind the rup~
ture front. The rupture stops at some later time either due to a
strong barrier which it runs into or simply due to lack of strain energy,
and the motion throughout the source region eventually ceases. Details in
this broad picture need to be filled in, particularly with regard to the effects
of spatially heterogenecus fault strength and initial stress. However,
practical computations of displacements and stresses within faulting
models of this type having any fault shape have not yet been done even for
a planar fault surface lying in an unbounded, isotropic elastic medium.

For certain special geometries of faulting, a great deal is knowm.
The most widely studied involve rupture fronts which initiate and
move as an infinite line. [From an enormous literature, one may cite the
key papers of Kostrov (1966), Burridge (1969), Freund (1976), Andrews (1976)
and Das & Akl (1977a,b).] From these two~dimensional studies, a quantita-
tive plcture has begun to emerge of_-how the distriButiod of fault
strength will affect rupture propagation. Important though this is,
such models are inherently limited in their ability to explain gross features

of faulting because many aspects of the earthquake source demand a three-
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dimensional analysis. For instance, motions at an earthquake source initiate
in a highly localized region (a point, rather than along an infinite line),
and plane strain and antiplane strain are present simultaneously (possibly
being coupled together) around the general rupture front. The special geo-
metry of elliptical (inecluding circular) cracks has been assumed by many
authors to model earthquake faults (e.g., Kostrov 1964; Burridge & Willis
1969; Richards 1976; Madariaga 1976). Here again, thls spacial assumption
has led to some progress, both for near~field studies, and for the study of
stopping phases. The major limitatlon of published methods is that the
areal growth of faulting has had to be specified, rather than itself becom-
ing a part of the solution for spontaneous crack growth. Thus, even for

a crack whi.h starts out with an elliptical shape, there has been no inves-
tigation to see if this shape will be maintained coherently during crack
growth. Mikumo & Miyatake (1978) have suggestad that major irregularitles
in glip can develop during dynamic faulting. They use a finite difference

method for solving for the elastic motions, and their results are qualita-

tively appealing. However, it should be pointed out chat due to inadequate

computer storzge, these authors had to place a rigid spatial boundary parallel
to the fault surface, at only one grid spacing from the fault. Reflections
from such a surface clearly medify the computed fault slip and pre-

vent an accurate account cof the effects of radiation of elastic waves away

from the source region.



In thils paper, we present a numerical method which is an extension of
Hamano's (1974) numerical method for two-dimensional problems [described
in derail by Das & Aki (1977a)]., The method 1s capable of handling three-
dimensional spontaneous rupture propagation with variable fault strength and
variable stress drop. In this paper, we shall not study these genmeral prob-
lems but only present the details of the method and show that the method
works by comparison with available analytical and numerical solutions for
two very simple cases. The uapplication of the method to actual faulting

procesges will be discussed in a future paper,

Table of svmbols (in alphabetical order)

F = discretized values of g at the origin

I

F(xli’xzj’o’tk) discretized value of g at (xli’xzj’o’tk)

gni(g,t;z,s) three-dimensional Green's function for a homogeneous half-space.

gniﬁ(x,t;y,s) response of three-dimensional homogeneous, half-space for

a unit step source time function

r,d = polar coordinates on crack plane Xy = 0.
S1 = crack reglon on crack plane x; = 0

S2 = region outside crack on plane of crack
t,s = time

At = grid-spacing in time



T = atfr é
ui(f,t) = displacement component in x -direction

LIRE TN = cartesian coordinates

Ax = grid spacing in % and X, directions.

o = coupressional wave speed

B = shear-wave speed

¥ @ Rayleigh wave speed

o = dynamic Erictional stress.

Uij’rij = stress components acting on crack plane Xq = 0 ;
Te = effectivé stress or "dynamie stress drop'. :

Formulation of problem

We model the earthquake source as a propagating plane shear crack in an infinite
homogeneous, elastic solid, radiating energy out into three spatial dimensions. The
geometry of the crack is shown in Fig. 1. Let x; = 0 be the plane across which siip
occurs. Initially, the Infinite body is under a uniform state of stress Uija'

The stress on the fault plane X, = 0 can be separated into the normal stress

[

033° and a shear stress 0,,° = 0, say. The component 0,,° can be taken ;
to be zero by taking the axis x; in the direction of maximum initial shear.
Let us assume that the inirial shear stress is increased so that the :

® over the plane

crack extends along the plame x; = 0. The normal stress U3y
%, = 0 remains constant throughout the rupture process (Richards 1976).
Let us take the origin of time t = 0 as the time when the crack starts

extending. The extension of the crack may be rapid enough to generate elastic



waves. The tip of the crack may move at some predetermined velocity or

the position of the crack tip as a function of time may be found using

the state of stress near the crack tip and an appropriate fracture cri-
terion. In this paper we shall only consider the former case. As the
crack extends, there is relative motion between the regions x, < 0 and

Xy > 0 and a displacement discontinuity occurs across the X5 = 0 plane.
This discountinuity in displacement is a funection only of the coordinate X))
Xos and time t. The shear stress on the crack surface is zero if there is
complete stress release or is equal to the dynamic frictioual stress Ty !
given by ”d033° on the erack surface. M4 iz the dynamic coefficient of
friction (which can be taken as a constant or a function of space and time).
let the incremental stresses due to the displacements ¢ from initial con-
figuration be Tij’ so that Iy = 015 + Tij i.e., Tij is the stress change
due to the motion. We shall solve the problem for Tij. (An initially
nonhomogeneous state of stress can be incorporated into the method.)

We shall assume that the initial conditions are that the displacements
and velocities are zero everywhere im the medium. We discuss next the
symmetry of the displacements and stresses across the plane X, = 0, . :

Das (1976) showed that the quantitiss Tp3s Ty, and u, are even across

the plane Xy = 0 and Tygs Y and u, are odd across the plane x, = 0, by

3
considering the equations of motion satisfied by the ui's and the fact that

Tigs Tpzs Tggo and u, are continuous across the crack plane X, = 0 and

u, and u, are continuous across the portion of x, = 0 outside the crack

3



but discontinuous across the portion of x, = 0 containing the crack.

For the cracked, region of the plane x, = 0, we can therefore write

3
up (x5 %y, +0, t) = ~u, (%, x,,=0,¢) = (1/2)Au1

and u, (x1 R 32,40, £) = -u, (xl, Xy, =0, t) = (1/2)Au2

whereAuland Auz are, respectively, the relative displacements in the x1

and %y directions across the X = 0 plane. For the unbroken region of

X, = 0, u, =0, u, =0. Thus there is a symmetry in the problem about

3 2

the plane x, = 0. Owing to this symmetry, it will be sufficient to
solve the problem in a half-space bounded by the plane containing the
crack, i.e., the Xy = 0 plane.

= 0 into the crack region 8.  and

Let us divide the crack plame x 1

3

the reglon outside the crack S;. (The normal stress T,; 3cT0ss the

fault is zero everywhere on X, = 0 since Taq 1s odd and continuous

across X, = 0. In 8, we therefore have:

T3 Ty are known.; T3y = 0; Uy Uy Ug unknown.

In Sz, Tyg0 Ty, aTE unknown ; Tgq = 0; u, = 0, u,

Using the relation Uij = Uiju + Tygs the boundary conditions finally are:

In §: 7,, =0, v =-1 = (04~0°) where T, is called the "dynamic stress
Tyy = 0 drop” or the "effective stress".
Uy U, U, are unknown.

in SZ: u, = 0, u, = 0, Tgq = 0, u, # 0 (unknown)

T,.., T unknowi.
13 22

This gives a mixed boundary value problem for a very general three-dimen-

sional rupture propagation problem including mixed-mode ruptures.

= (0 and u, # 0 is unknowm.

(1)
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The integral equation for the three components of displacement can,
in general, be written as [pg. 29 of Das (L976), also Aki & Richacds
(1980) eq. 2.43]

u (x,t) = /7 ds free

-

é| y Gy (f.t;g,S)Tij(g,SDdS'(z)

where the Green function Gnifree(f,tgz,s) is the displacement in the n~direction
at the point (xl,xz,o) at time t at the free surface due to a unit impulse acting
in the i-direction at (yl,yz,o) at time s at the free surface, and §' is the
bounding surface of the elastic half-space (i.e., the infinite plane .ontaining
the crack). Since %, = 0, y, " 0 in our case, the dependsnce on g,i:,s,t ig only

3

via (y,-%,), (y,~x,}, 0,0 and (t-s), and so Gnifree !

(xst;Y15) = gni(ylﬂxleZ”xzio’os

t-s)., Oun the fault plane Xy = 0 we get

oo ®
u1(x1,x2,0,t) =‘£ ds_if [gll(yl—xl,yz-xz,ﬂ,U,t-s)113(Y1,Y2,O,S)
+ 312(Y1"31syz-xz:osost“3)723(Y1:Y2)0,5)

n
uz(xl:xzio’t) ﬂﬂi ds-i? [82:(y1“31:Yz"xz,O,O,t'S)flacylsyu,oss)
* 8y, y =%,y ,m%,,0,0,t-8)1,,(y,,7,,0,9) (2)

+ gzs(yl“xl:yz“xzsozo,t“S)T33(Yl:Yz’Ons)]dyldYZ

o
uS(Xstz:O,t) =-i dsni? [gsl(ylﬁxl1Y2_32i0’O:t_s)Tlg(yl’Yzfo!s)

+ gszcyl"xlayz"xzso’ost"s)fzscyl!y29015)

+ sga(yl-xl,yz-xz,O,O,t—s)133(y1,yz,o,s)]dyldy2

({The terms 2130 By3 an@ g4, are included to study tension eracks.]
The region of integration for the system of integral equatioms is
defined by the causality condition. Taking the P-wave velocity o = 1,

the equation for the region over which Green's function 1s non-zero is



(t=8) = My, =x)% + (y,=x,)% +y,220, t>s320.

——y

For X, = 0, this reduces to the cone § «Fig. 2) defined by
(t-e)2 - (y,=%)% = (y,~x,)2 20, t2520, (3)

Thus the integrations in the integral equations extend over this conical
region only. To find the displacements inside the ;rack. it is necessary
to solve the system of three integral equations under the initial and
boundary conditions discussed above, (It is not necessary to determine
the displacement componcnt u,, which gives the displacement normal to

the crack plane, as long as we are interested in looking only at the slip
on the fault plane.) The reglon of integration includes the ragion S2
outside the crack (but within the backward characteristic cones) where

the stress components Tia and T, are unknown, So we must first determine
these stresses, This can be done as long as the crack-~tip velocdty is

known - either assumed g priorl or determined by use of some fracture

criterion, as we shall show in a later sectiom.

4, Green's function for the three-dimensional problem

To solve for u, and u, in the system of equations (2), we need
Green's functions 8110 812 (= g21) and g, where, for example, by g,

we mean that

glz(xi,xz,o,t;o,o,o,s)
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is the displacement in the xl—direccion, at position (xl,xa,o) and time t,
due to a unit impulse applied in the xz-direction at the erigin at time s.
Richards (1979) has analytically solved Lamb's problem ar, obtalned closed

f.rm solutions for the case when the applied force is a unit step in time

H H
v 82

and gazﬁ. Then we simply need to find the time-derivative of these quan-

rather than an impulse., Let us call these Green's functions 8y

tities to obtain the Green's functions we require for our problem, so
d H

that 311 = 1 gll , ete,
The four Green's Efunctions are given In terms of two dimensionless
functions II(T) and IZ(T) via
H
g

" [II(T)cosz¢-12(T)sin3¢}/(ﬂur)

H H

" [II(T)+12(T)]cos¢sin¢/(nur) (4)

gH22==iII(T)sin2¢‘12(T)C°52¢]/(ﬂur)-

where,
X, =rcos ¢, X, =rsin¢, T= at/r. (5)
and
.
0 for T < 1,
TZ{CI/(T2~T12)%+c2/(Tz-Tga)%-c3/(T32-T2)%} for 1 < T < («/B), (6a)
I,(T) =
L j 0.5—2T2c3/(T32-T2}li for (a/B) < T < T, E(c/cR),
0.5 for T3 < T,
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0 for T < 1,

!
-ck+c1(T2*T12)%+cz(T2-T 2)HE-+C3(T32-T2)5 for 1 < T < (a/g),
I,(T) = 4 i 2 (6b)
-2cu+2c3(’1'32-1‘2) for (a/8) < T < T,

-Zcu for T3 < T,

The constants Tla, Tzz, T32 are solutrons to the Rayleigh cuble equation,
and in fact Ta = a/cR where cp is the Rayledgh wave speed. Sy €5y C, and
c, are positive constants, for a homegeneous elagtic medium of given Poisson's
ratio less than 0.263., The seven constants le,..., ¢, need be evaluated jus: once
for a given elastic medium, and then the computation of our Green's functions
reduce to taking at most three square roots, and performing on the order
of ten multiplications and divisions.

Fig. 3 shows the quantities I and I2 as found by Richards (1979)
for the case a = /38, and the tire-derivatives of I, and I,,
for the same case., WNote the sjagularities in I, and I, and in
9I,/3t and :szat. Note also vhat for the three-dimensional Green's func-
tion with an impulsive source, the displacements become zero once the
Rayleigh wave has passed. This results in a drastic reduction in the computer
storage necessary to store the g's, unlike the two~dimensional problem
where the disturbance never ceases. HNote zlso that 81y and gzz are siwply
90° rotations of one another so0 we only have to determine 811 and 81y- Also 811
itself is symmetric about the x, and x, axes so we only have to calculate

it in one quadrant. g , has an eight-fold symmetry and needs to be cal-

12
culated only in half of one quadrant.
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5. Numerical method of solving the system of integral equations

The integral equations (2) are of the general form

ulx, ,%,,0,8) = /1] g(xl-yl,xz-ya,0,0,t-s)r(yl,yz,O,s)dyldyzds (7)

+ LI ] + "

In order to solve (7) numerically, we divide the (xl,xz,t) volume into
elements, each having length Ax along the x; and %, direction

and At along the t-direction. The grid points are the centres

of these elen#%i.” and are given by X, = Lax, X, = mAx, t = nAt, where
t,m=0,21,22, ... , 0n=20,1,2, ... The stresses are assumed

to be constant within each element. The kernel g has to be dis-
cretized so that the integrals in (7) can be replaced by summation
over grids. We discretize g by averaging g over each volume clement.

Then the discratcized g is

)
1 t k+At£§ xli+ﬁx/- x2j+Ax/2

Flrypga%yy000t) = St f ;9 I g(x,,%,,0,0,6)dx,
ty-At/2 xli—AxIZ xzj—Ax/2

where x112+x zi aztzk, ¢ = P-wave velocity

2}

Interchanging orders of integration (which is allowable as long as the limits

of the integration over X, and x, are not functions of time), we get
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J{Ii'*'ﬁ?:/z 4 +Ax/2
1 Sodxy [T dxp (g
AXDXAL xy =0%/2 xzj—AXIZ

Bix,1x,,0,0, b 408/2) =g (X, ,%,,0,0,, -At/2) ]

Transforming to r,$ coordinates (by equation (5)), we find that we are
able to do the integration c¢wver r analytically. The Integration over ¢

has to be done numerically. Due to the syumetries (or antisymmetries) in
the g's as discussed before, we only have to do the numerical integration
over one quadrant for the gll‘s and over half of one quadrant for the glz's.
For the points lying along the t-axis (including the origin of the (xl,xz,t)
coordinate system, we were able to do the integrations over both r and

$ analytically. Note that the L/r type singularity in the Green funec-

tions (equation (4)) does not cause any problem even at r = 0 since 1l/r

can be integrated over an area about the origin to gilve é finite value
(e.£., Andrews 1974),

Discreftizing the integral equation (7), we obtain the matrix equation

u(xli,xzj,o,tk) = AxAxAt I [F(xli"xlz’xzj'

O,D,tk-tn)T(x ¥
1l,m,n 1

0,e,) (8)

x2m’ 2m’

+ o L)

where (xli,xzj,O,tk) refers to the observation point. It should be pointed
out that in equation (8) one car use variable values of Ax and At in the
region of integration. In other words, the cone of integration S can be
divided into finer grids at some places than others, e.g., if one is in-
terested in studying more closely the behaviour at the crack-tip, one can
divide the region near the crack-tip into finer grids than regions farther

away from the crack tip. This is useful in determining, say, the amount
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of energy absorbed at the crack-tip during the rupture process. In this
respect, the integral equation technique is analogous to {inite-element
methods which allow variable grid-sizes. However, implementation of this
variable grid-size is not a trivial prcblem and for now we shall consider
only constant grid-sizes,

Figure 4 shows a plot of the discretized ) at a ceértain instant in
time. Note that as expected, there is no P-wave along the xt-axis.

To determine the stresses 1,3 and Tyg in Sz, we make use of the boundary
conditdons that u

0 and u, = 0 in Sz. Then, from the integral equations,

we get

0 =sdt f/{gy,C )7, ) +g),(.)my 0 )ldy,dy,

0 =rdt f/[g,,( )t 0 ) +g, ( )r C Jldy dy,.

23
The region of integration is the same backward characteristic come S
defined in (3). Writing the two above equations in the discrete form

x =y_ and s =t te the L.H.S.,

and taking the term for which L A R

we get

F1aTy3(%),%p,0,8) + Fy Ty 4(x),%,,0,t)

= - EIZ [glzc..)123(..)+gll(...)113(...)]
sum over

X13%08

= L, say
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F xz,O,t) + szrla(xl’xa’o’t)

2T 230

= - BB {g,,(L 0T, (L)4g,, Gt ()]
sum aver

X)1X,38

= M, say

where Fij are the known values of the Green function 84 averaged over the grid
centered at the origin of the coordinate system. Lhe summation extends over

every point of the cone S except the vertex. Due to the symmetries in the Green

functions, it follows that:
F,, =0, 1f L # j

ij
#0, 1£ 1 = 4.
Alsc, Fll = F22- Hence, the unknown stresses are determined as
L
T3l Xy 05 8) =
11
and To.(%,, X5 0, t) = .-
231 g T2 F



15

6. Instantaneous clrecular shear crack

We study the case of an instantaneous circular fault of finite radius
that suddenly appears and starts radiating without growilng. This is a
non~physical problem as it violates causallity. We study it simply to
check the accuracy of our numerical technique by cowmparing it with the
results of Madariaga, (1976) who studied the same problem using a com-
pletely different numerical technique viz. a finite difference technique.
Qur results are shown in Fig, 5. The radius of the circular fault
was 4.5Ax and we took oAt/Ax = .5. The slip at a point inside
the crack was stopped when the slip veloeity at the point tended to re-
verse sign. We show results for various radial distances aleng the crack.
Note that we plot total slip so that the results of equation (8) need to
be doubled, The normalization factor for the slip is are/u, where a ig the fault
radius, Te 1s the dynamic stress-drop, ¢ is the rigidity. The points where
the P stopping phases from the nearest and farthest edge of the fault arrive
at a given point is shown by crosses and open circles, respectively. The
point at which the faunlt healed is indicated by closed circles. Comparison
with Fig. 2 of Madariaga (1976) shows that in general our results compare well
with his. It is found that the fault generally starts healing about th: time
when the P-stopping phase from the farthest edge arrives, Madariaga
fouad that every poinkt of the fault healed almost simultaneously.

The final slip after the fault has healed was found by Madariaga to be

T a

u, = *%“ (1.52) at the centre of the crack. The gtatic solution for this
aT

case is u, = 3}'—53 1-r /5% , where r = distance from the centre of

the fault. Madariaga's solution thus overshoots the static solution at
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the centre by a2 factor of 1,34, We find that our final slip at the centre

is virtually the same as Madariaga's. The slip at points £-== 22 (not
plotted), f = 44, §-= .66 and*i = .88 overshoot the static

solution at these points by factors of 1.31, 1.25, 1.2 and 1.0, respec-
tively, in our case. Madariaga found that the slip at the points x/a = .2,
.4, .6 and .8 overshoots the static solution at these points by factors of
1,25, 1.18, 1,22 and 1.21, approximately. This implies that the centrz of
the fault overshoots the statidec solution more than the edges and that the
final static stress drop 1Is not a constant over the whole £ault but is greater
at the centre of the fault than near the edges., This non-uniform stress drop
1s a consequence of our healing specification.

We also point out here that for a circular crack there is an azimuthal
gymmetry in dilsplacement, stress, and velocity fields. We have not assumed
such a symmetry but have calculated the fields in one whole quadrant of
the circular fault. The results have the required azimuthal symmetry.

That is, in every direction from the centre of the fault the displacements

and stresses are the same within 15% (in the worst case).

[

ki
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7. Circular crack which grows at speed a/2

We next study the case of a circular crack that starts from a radius
of 1.54x and grows at half the P-wave speed., In Fig., 6 we show numerical
results for two cases: one for a self-similar circular craclk that never
stops and the other for a circular crack that stops when it reaches a
radius of 6.5A% . The latter solution is shown by dotted lines, where it

diverges from the former solutiom.

e s
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a, Selfm~gimilar crac.

The half-slip, plotted at various radial distances along the fault,

. AX T
is normalized by the factor (: 3ue)' The analytical solution fer the

half-slip for a circular self-similar shear crack which initiates at a
polnt and grows at a speed of a/2 can be determined from Kostrov (1964)
or Dahlen (1974) to be u, = .69 vYt2-41? | using the same normalization
factor as we have used, where r is the radius at time t,

The analytical solution is shown on the figure as continuous lines.
For the case when the crack stops, the arrival of the P-stopping phase

from the nearest crack edge 1s indicated. The slip 1s stopped when the ¢

5o

slip velocity tends to reverse sign. Our numerical solution compares
well with the analytic sclution. The solution for the points closer to
the centre are initially larger than the analytic solution but crcuverge

to the analytic solution at later times. For points farther away from
the centre, this effect is not seen. This is due to the fact that in

the analytic solution the rupture initiated at a pednt, whereas in our
problem the initial rupture area is finite. THe displacement at a point
immediately after it breaks shows the sharp rise as 1s expected from the
analytic solutien. This is in contrast to the result§ of Madariaga (1976}
who uses numerical damping to smecoth the stresses and‘velocities at the ;
crack tip and thereby loses the detailed behaviour at the erack-tip.

We plot in Fig. 7 the slip velocitles determined by numerical differ-
u1(t+At)—ul(t—At)
24t

distances and azimuths from the centre of the fault. The numerical dif-

entiation using the relation ﬁl(t) = at various raddial
ferentiation introduces high-frequency noise into our results, The numer-
ical solution oscillates about the analytie solution and does not diverge

significantly from it. This is a very important property of our result
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sirce pulse shapes due to a rupture depend on the slir velocities on the
ruphbure surface., In fact, since the determination of pulse~shapes in-~
volves integration of these slip-velocities over the fault surface, these
oscillations will be drastically reduced and will not affect the pulse-~
shapes,

Fig, 7 also shows that our results have azimuthal symmetxry about the
origin, even though such a symmetry was not assumed. 1In our problem,
we took the xl~direction to be along the divection of the initially applied
shear stress, For a self-similar ecrack, this means that the component of
displacement u, and the component Tys of the shear stress on the crack

surface are both zero, We calculate both these quantities to check if

they are zero., We find that ", and v,, are both very small. The reason

23

for u, and T, DOt heing exactly zero 1s numerical noise due to

2 3

the discrete nature of the problem. In fact, u, and T, may be taken as

a rough measure of the numerical noise in the u, and L nomponents,

1 3

respectively,
Wa find that u, is never larger than 8% of u, and does not increuse
with time. Tyy is found to be always less than 20% of the dynamic stress
drop. Both u2 and 123 show azimuthal symmetry about the centre of the
crack.
Thus we find that even though our grid-spacing is fairly rough, so that
we have only a crude approximation to a circular crack which extends discontinu-
ously and we have sligntly different initial conditions than that neces-
sary for a gelf-similar crack, our results compare well with the analytice

solution. The only restriction is that we are limited in the upper limit

of frequencies of radiation we can study with this technique.



b, Finite crack

The results for a ecircular crack that starts from a radius of 1.54x
grows at «/2 and is stopped when 1t reaches a final radius of 6.54x 1is
shown ir Fig. 6 by dotted lines where it deviates from the self-similar
solution, The normalization factor for the half-slip is (are/3u). The

final offset at any point on the crack is given by

T
= 12 e ,o2 2
u, = (1.23) T W Yal-r ,

so that the dynamie solution overshoots the static solution by 23%. TFor
the same problem using different numerical techniques, Madariaga (1976)

found an overshoot of 20% and Archuleta (1976) an overshoot of 27%.
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Conclusions

We have developed a numerical scheme based on a boundary-integral
equation technique to determine the slip on the fault surface for a
three~dimensional shear crack of any arbitrary shape. We have shown
by comparison with available solutions for simple cases that the tech-
nique wotrks correctly. The advantage of this method is that it can in-
corporate a fracture criterion so as to enable the study of spontaneous
crack prupagation. Further, it can be used to study the case when there
is variable strength, variable initial stress, and variable friction on
the crack surface., Study of these cases is‘'now underway. The computing
time for fifty time-steps for aAt/Ax = .5 was 15 minutes of CPU time on

an IBM 360/75 or IBM 360/91., The method can also be applied to study the

propagation of tension cracks by using the appropriate components of Green's

functions, which are available from Richards (1979).
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Figure Captions

Figure 1, Schematis representation of fault geometry. *, i3 the direc~
tion of initial applied stress and X, ® 0 is the fault plane,
Figure 2, Region of integration in (xl, Xys t) space, Shaded region
in lower figure 1s the cone § defined in equation (3). 1In
the upper figure, the cone S 1s projected on the xz = 0 plane

for clarity.

3T 3T
Figure 3, Figure showing time-dependence of Il, Iz’ EEL and T for

the case a? = 382, The dotted lines are the values of the func~-
tion increased ten~fold to show detailed behaviour at low am-
plictudes. P, S and R are the arrival times of the compression-
al, shear and Rayleigh waves. Values are plotted as heavy

lines only between amplitudes 1l for Il and I2 and amplitudes

aI1 312 CE
+ 10 for 3T e In fact, I1 is singular at R, 3 is singular

at P and R and ;%L is singular at S and R,
Figure 4. Three~dimensional plot of the discretized Green's functilen
component Fjj(x;, %X,, ) at t = 17.54x /o. 1 and 2 are the direc~
tions %, and %, 0 is the point of application of impulse, P,
§ and R indicate the compressional, shear and Rayleigh waves.
Figure 5. Notrmalized slip function for am instantanecusly appearing cir-
cular fault. The normaiizatiom factor for the time is %E-and
for the siip is %%;, where T, is the stress drop, w is the rigid-
ity, and a is the fault radius. The slip is shown at several
radial distances from the origin. The P-wave speed was taken
as unity., The static solution at the centre of the syrack is
at the level 1.1. The crosses and open circles indicate arrival
of the P-stopping phase from the nearest and farthest edges of

the fault. The solid circles indicate the time when the point healed.



Figure 0.

Figure 7.
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Normalized half~slip for a circular self-similar shear crack

which grows at speed o/2, The continuous lines are the analy- E‘
tic solution due to Kostrov (1964). The step-like solid lines

give the numerical solution. The step~like dotted lines are

the solution for the case when the crack stops suddenly after

reaching a radius of 6.5Ax

Normalized slip velocitles for a circular self-similar shear

crack which grows at a speed of o/2. The continuous lines are

the analytic solution given by ﬁl = .69t/ Vt?-4rZ ., The numer-

ical solutions are shown by crosses and solid circles.
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INSTANTANEOUS CIRCULAR PLANE SHEAR CRACK
WHICH RADIATES WITHOUT GROWING

AT
aAX .5
Normalized distance from center
'=r/a, r=distance from center

a = fault radius & :

NORMALIZED SLIP

0.0 1.0 2.0
NORMALIZED TIME

Figure 5
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